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Abstruct

In this stud.,' , al 1 previously di,;cov¢.r',d stable Periodic orbits

about the triangular libration points are tested on a planar

restricted four-body truth model, The truth model is an algorithm

developod from equations used by T.A. Ileppenheimr for colony

location used pert.urbation theory anti the cquatic n of the cenei,-,

Only one of the or-Its, developed by Wbecei.e usq-ng a vey re-

stricted four-body problem with Sun - ,oon - Earth circu cr motion,

is found to bo relatively stable for at least t.r::ty years, It is

prograde about L4 having a period in resonance with the lunar

synodic month. Two other orbits, one similar to Wheeer's and

one 180' out of phase found by Kolenki:ewic,,z and Carpenter are

marginally stable.
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APPLICATION AND COMPAI[SON CT' STABLE

PIERIODIC ORBITS IN TilE VICINI:Y OF

LAGRANGIAN POINrs L4 AND L5 TO

A FOUR-BODY TRUTH MODEL

I. INTRODUCTION

Background

Foremost space scientists have been looing in recent ycars

for existence of stable periodi.c orbits in which to place long-

term satellites for weather, observation, colonization, and

protection. The subjects of resonance and stability are closely

related to the problem of evolution of the solar system. It is a

physically involving problem and the methods available to mathe-

maticc today seem unsatisfactory to produce pure nonlinroar ways

of attack. The linearization process in both subjects is clearly

of doubtful significance, so that, even if very restrictive,

numerical solutions are still the best and more valuable sources

of information. It is quite possible that we know now very little

more of the entire problem that was known to Poincare', with the

advantage that we can now compute much faster and with much more

precision.

Hardware developments like the Space Shuttle and inertial

Upper Stage bring the day closer when we will be able to use

these orbits. Studies have revealed a number of stable periodic

orbits which may exist to replace the unstable near-earth syn-

chronous orbits and give advantages such as a continuous

view of the North Pole, which are unobtainable today, The area of
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of interest for these types of orbits is cislunar space, or the area

of space where satellite motion is affected by the gravitational

fields of the Sun. Earth and Moon and any other forces caused by

the gravitational attraction of Jupiter, Earth oblateness, etc.

are negj.igible. Many orbits have been found in cislunar space but

their periodicity and stability in most case: have been determined

using three-body or restricted four-body equations rather than a

truth model.

Studies in the area of orbital mechanics near L4 and L5 have

increased in complexity over the years. Let MI , M and M denote
1 2 3

three point masses such that MI> M2) N . The masses move under the
123

influence of their mutual gravitctional attractions; the force

between any two masses is inversely proportional to the square

of their distance and proportional to the product of their masses.

It is well known (Ref 27) that there are in this "three body

problem" five exact solutions in which the three masses maintain

a constant configuration which revolves with constant angular

velocity. An important specialization of the three body problem

is the restricted three body problem in which M 3 is infinitesimal

and M1 and M2 move in circular orbits around their barycenter.

The smallness of M means that it does not influence the motion3

of M1 and M . For many purposes it is convenient to describe the

motion of M3 in a coordinate system which is attached to M1 and

M 2 . In this rotating coordinate system the five Lagrange solutions

show up as five fixed points at which M3 would be stationary if

placed there with zero velocity (i.e., zero velocity in the

rotating coordinates). If is further known that, in this rotating
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coordinate system, M3 may describe small periodic: orbits about the

Lagrange solutions. Glyden therefore called the points which

correspond to the Lagrange solutions "centres of libration"; they

are also often referred to as "libration points" or "Lagrange

points."

The libration points are singular points of the differential

equations of motion in the restricted problem of three bodies,

they are also equilibrium points since the gravitational forces

on a mass placed in such a point are balanced by the centiifugal

force. Three libration points, the collinear points, are found

on the line connecting the two large masses; the other two, thc

triangular points, form equilateral triangles with the two large

masses. By linearizing the equations of motion Charlier (ref 9)

showed that there are two classes of periodic infinitisia al orbits

around the triangular libration points, namely those with short

period (period very nearly equal to that of the period of the two

large masses) and those of long period (the period depending on

the mass ratio of the large masses). Each of these classes con-

sists of concentric, coaxial and similar ellipses with semi-major

and minor axes in the ratio 2:1 for the short period orbits and a

larger ratio, again depending on the mass ratio, for the leng

period orbits. Plummer in 1911 (Ref 31) considered Charlier's

problem in a more general format and from his results some addi-

tional conclusions can be drawn, For a mass ratio of the two

large masses smaller than 1/27, both classes of orbits around the

triangular points can be expressed with trigonometric functions;

these points are therefore called stable libration points.

3
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Furthermore, only one of the classes of orbits around the collinear

libration points can be expreLsed in trigonometric functions, the

other requiring hyperbolic functions; the collinear points are

therefore called unstable libration points.

The discovery in 1906 of the first of a group of asteroids

which appear to oscillate (or, in astronomical terms, librate)

around the Sun - Jupiter triangular libration points, gave further

impetus to the study of these motions. This first discovery was

called Achilles and since subsequent discoveries were also called

after heroes from the Trojan group. Broun in 1911 (Ref 4)

considered the long period orbits around the triangular libration

points by supposing finite aplitudcs of libration and discussed

in some detail the dependence of period and orbit shape on

amplitude. In another paper (Ref 5) he discussed libration

orbits for mass ratios greater than 1/27. Willard in 1913

(Ref 54) discussed the short period orbits, again of finite

amplitude and comp utcd a number of possible orbits. Whereas all

this work was based on the restricted problem of three bodies,

with the discovery of more Trojans additional theories emerged

which attempted to take into consideration the actual physical

circumstances. Among the first contributions were those by

Linders in 1908 (Ref 28) and Smart in 1918 (Ref 39) and in

1923 (Ref 6) Brown published the explanation for his theory

which was accurate enough to compute the position of a Trojan

asteroid within a few seconds of arc. This theory was applied

numerically to Achilles by Brouwer in 1933 (Ref 2) and to

Hector, which has a particularly large libration amplitude, by

4
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Eckert in 1933 (Ref 17). Since this theory was numeric~l it had to be

set up separately for each asteroid. A group theory was outlined by

Brown and Shook in 1933 (Ref 8) in which the intert..ting direct and

indirect effects by Saturn were also discussed, Herz in 1943 (Ref 21)

carried out some of the details of Brown and Shook's plan. Further

work concerning the motion of the Trojans was accomplished by Wilkens

in 1917 (Ref 50), 1918 (Ref 51), 1926 (Ref 52) and 1932 (Ref 53).

ThiYring in 1930 and 1931 (Ref 46) considered again the

problem of the long period motion, in particular the dependence

of the period on amplitude. His subsequent contributions in

1950 (Ref 47) were largely based on numerical work aind his 1959

paper (Ref 48) was of particular interest because of the applica-

tion of an electronic digital computer. Thiring's claim of the

non-existence of long period orbits through any orbitrary point

was refuted by Rabe in 1961 (Ref 32) who made a survey of numeri-

cally computed long period libration orbits, expressed in Fourier

Series expansions. Rabe also discussed some aspects of the

stability of such periodic orbits and extended these studies and

his survey in 1962 (Ref 33); similar work in the same year (Ref 34)

was done on libration orbits for the Earth - Moon system. Rabe has

developed the idea that such periodic orbits should be used as

intermediate orbits for computation of real, nonperiodic orbits.

Stumpff in 1963 (Ref 41) reconsidered and refined ThVringls

theory, in particular with respect to the relations between long

period orbits with very large amplitudes around the triangular

libration points and nonperiodic orbits in the neighborhood of

the collinear libration points.

5



The study of libration points in the Earth - Moon system was

initiated by Klemperer and Benedikt in 1958 (Ref 25). They argued

that in analogy with the Trojan asteroids the re are to be found in

the combinEd gravitational. field of the Earth and the Moon, two

areas in which natural or artificial. bodies would movu, %.:hile

maintaining a more or less constant configuration with the Earth

and the Moon. Again, as was the case with the Trojans, a natural

discovery of such a "cloud" near 1A (the libration point 60 ahead

of the Moon) was. also reported. But since then, the discovery has

been refuted although dust particles may remain in the area tempo-

rarily according to Roosen (Ref 35) and Wolff (Ref 56) in 1967.

More recently, interest has been shown in the problem of the

influence of the sun on motion close to the libration points of

the Earth - Moon system as well as motion about the Earth and

the Moon itself. One possible model for the Earth - I-oon - Sun

system was proposed by Su-Shu Huang in 1960 (Ref 22), who called

it the "very restricted four-body problem." Here the Earth and

Moon describe circular orbits relative to one another, and their

center of mass describes a circular orbit around the Sun; all

these orbits are Keplerian, lie in a plane, and no perturbations

are considered. Using this model Huang studied the motion of a

fourth body of an infinitesimal mass in a similar manner as in the

restricted four-body problem. lie concludes this model gives a

general idea of where the fourth body could or could not go under

given initial conditions when they are no longer very near the

Earth. Columbo in 1961 (Ref 10) considered the motion near L4

and L5 under the influence of the Sun, and the possibility of

6



stabilizing it with a solar sail; in another paper in 1962 (Ref 11)

he gave a numerical analysis of the influence of the Moon orbit's

eccentricity.

Ellis and Diana in 1960 (Ref 1S) on a parellel tack prcsented

some numerically com!-,uted libration orbits in the restricted

probleir.. This was extended by deVries and Pauson in 1962 (Ref 14)

by adding linearized equations of motion relative to a stable

libration point in the restricted problem the principle effects of

a fourth body representing the Sun as it is related to the Earth

and Moon. Two linear, second order differential equations with

time varying coefficients, were obtained which could be solved in

powers of the sma].l parameter (mass of Sun divided by the cube of

the Earth - Sun distance) . The first order solution and the most

significant parts of the second order solution were obtained and

for a niumber of different initial conditions this presented a

reasonably close agreement with numerically integrated orbits,

It appeared to the authors that any so called "stability" was

strongly influenced by the Sun but it also appeared possible to

choose the initial configuration of Earth - Moon - Sun and initial

conditions of the small particle such that this influence was small

enough for a usefully long "libration life" to be possible. In a

subsequent paper by deVries in 1962 (Ref 15) the influence of the

Moon's eccentricity was discussed and it was found that, if the

Sun was introduced in the consideration of motion near Earth -

Moon libration points, the Noon's eccentricity would have to be

considered also. This was to play an important part in the four-

body model used in this thesis. Michael in 1963 (Ref 29) discussed

7



orbit envelopes which depend on initial conditions, based on a

linearized analysis of the restricted problem.

Using Huang's four-body model Cronin in 1964 (Ref 12) proved

that u,der certain conditions the fourth body has a periodic

motion, relative to a rotating coordinate frame, near each of the

libration points of the restricted three-body problem. Their

proof is based upon assumptions concerning the masses and distances

of the bodies which are not satisfied by the Earth - Moon - Sun

system.

Siferd in 1965 (Ref 38) used Iuang's model for the Earth -

Moon -- Sun system to generate some periodic orbits. Using a nu-

merical integration procedure, the equations of motion for the very

restricted four-body problem were integrated utilizing a digital.

computer until some periodic orbits were obtained. By this

technique eight periodic orbits, in the numerical sense, with a

respect to a rotating coordinate system were found. Three orbits

were around the Earth, three were around the Moon, and two were

around Ll. No periodic orbits near the triangular points were

obtained.

Danby in 1965 (Ref 13) investigated the influence of the Sun

on motion close to the triangular points of the Earth - Moon system,

He felt the very restricted four-body model inadequate for his

investigation and therefore used a model in which the secular

perturbations of the moon due to the Sun were retained. The results

may be said to strengthen the hope that stable motion around the

triangular points of the Earth - Moon system is possible. Other

investigators include Tapley in 1963 (Ref 43) and 1965 (Ref 44)

8
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who used a mQdel similar to the very restricted four-body model

except the Moon's orbit is inclined with respect to the Earth - Sun

plane. The ecluation ; of motion for a particle near the triangular
/

points of the EXt -"Moon system are numnrcia]ly integrated on a

digital co/tcr for various initial conditions. one rcsult

indicate 'that a particle placed initially at a triangular point

(L4) ith zero relative velocity has an envelope of motion, centered

a L4, going through a mode of expansion to a value of one Earth -

Moon distance for the major axis followed by a mode of contraction

to a value of 1/8 Earth - Moon distance for the major axis, The

7' envelope repeats this sequence several times during the 2500-day

period investigated. Feldt and Shulman in 1966 (Ref 19) extended

the investigation of Tapley to 5000 days and found that the

expansion - contraction of the envelope of motion did not persist

due to a lunar encounter at approximately 4000 days. IIowever,

Tapley and Schutz in 1966 (Ref 45) discuss the effect of the

constants used in the model and found that if more accurate values

were used, an expansion - contraction motion persisted for over

8000 days. Katz in 1975 (Ref 24) investigated numerical orbits of a

satellite placed near L5 but all the initial conditions used did

not have long-term stability.

Wolaver in 1966 (Ref 55) used a linearized four-body approxi-

mation to demonstrate that proper use of initial conditions could

aid stability of an orbit in the vicinity of L4, Then Heppenheimer

in 1978 (Ref 20) developed realistic models incorporating numerical

four-body perturbations in a three-dimensional analysis. Although

he worked on resonant orbits about the Earth, his model sufficiently

9



mirrored the real world to be used in this thesis as the truth

model starting with the proper initial conditions for stable

periodic orbits about the triangular libration points discussed by

various authors using more simple m:adels.

In the search for stable periodic orbits aobout L4 and L5 for

space colony candidates, four were found. Schechter in 1968

(Ref 36) concluded a stable, periodic coplanar orbit can exist

about the Sun perturbed Earth - Moon triangular point. The model

used was a three-dimensional analysis of the long-T-Iriod features

of four-body motion Obout L4 where short-term period terms are

removed from the Hailtonian via von Ziepo] 's meit'hod resulting in

a slowly varying Hami]ltonian. He obtained an orbit with a period

of 28.6 days with a 1:1 resonance with the Sun and Moon in a

rotating coordinate frame. The elliptical motion is clockwise

about L4 and has a semimajor axis of approximately 60,000 miles.

Schechter demonstrated that out-of-plane motion is not seriously

excited by the Sun and has a negligible effect on coplanar motion,

It is this coplanar motion which is the dominant factor as far as

stability is concerned.

But Kolenkiewicz and Carpenter in 1968 (Ref 26) confirmed

Schechter's orbit by numerically producing a somewhat larger orbit

having the same essential features of the orbit by Schechter. In

addition, a second similar orbit having a phase difference of

1800 was calculated. It is believed that the discrepancy in size

can be accounted for by differences in the models used for lunar

orbit. If Schechter's lunar orbit was perturbed elliptical instead

of circular an orbit on the order of 50% larger would result from

10
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his equations.

Whetel. in ]978 (Ref 49) found a stabl perjodic orljt about.

L4 in the restricted problem of four bod.-i s. It exhibited a 1:1

comuonsurability with the Moon's synodic month and lias a period

of 29.5305)332 days. The eigenva lues %,eure solve d for and the

PoincarL.' exponenUL; were then dctermlno d to 1)(, puro imaginary,

This '1plied linear stability of thu orbit in the restricted

four-body problem.

Barkhaim, Modi, and SoudaLck in 1975 (Ref 1) found a 2;]

literal solution to the restricted four-body problem about L4 and

L5 and numerically genurated periodic, four-body solutions that

agreed to within 5t of th literal solution.

Last of all, Kamel and Breakwell in 1970 (Ref 23) found

similar results to Kolenkies',icz and Carpenter using the von Zeipel

technique. More surveys of motion near the triangular Earth -

Moon libration points are given by deVries (Ref 16), Steg and

deVries (Rcf 40), Szebehely (Ref 42), and Schutz (Rof 37),

Problem and Scope

With space colonization on the horizon, it appears that the

most fundamental questions about motion near libration points are

those about the existence of periodic orbits and the stability of

such orbits. If stable periodic solutions exist, solutions of

differential equations at or near conditions of commensurability

may be used as intermediate orbits for the computation of non-

periodic orbits by perturbation analysis. In the restricted

problem of three bodies the existence of periodic orbits about the

triangular libration points is well established. This result

11
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followed from the analysis of the Ii 1nr i (,.d equsl t i on of miot ion

and served to exhibit the stability of the triangul ar configuration,

as one of Lagrange's exact solutions of the restricted pro)lelm, on]y

in so far as the linearization is valid, that is, only for infini-

testima disturb ances. The apparent existence of non-infinitcsima

periodic orbits (Brown, Th'riing, Rabe) followed either from the

analysis of higher order approximations of the differentia-l

equations (but still not exact) or from nume.rical work. It is

very difficult to derive meaningful result; by qualitative mnthcd:;

and with the problem of libration orbits; we nay still be in the

position of trying to come to sp1ecific resLits Ly the- st}udy of

particnular analytical or numerical solutions.

Considering the modern trends in the study of nonlinear

mechanics toward qualitative methods one may expect that any new

work on triangular libration points should concentrato on the

establishment of a proof of stability of libration orbits, If

then a solution in the form of analytical expressions c)f the

coordinates as functions of time with an exhibition of integjration

constants would be at all required, one should use periodic

orbits (whose existence would first be proved) as intermediate

orbits for the perturbation analysis. Two reasons discourage

one from the following approach. First of all, even though the

past few decades have seen a significant development of methods

and theorems in nonlinear mechanics there is still very little

known about systems of higher than second order. The methods

of the phase plane, so convenient and easily visualized for

second order systems, must be transferred to multidimensional

12



phase Spacu which introduces some forid ible com: 'lications,

Secondly, the few qualitative reul t.Fi which are know.'n about the

triangular libration pointe: specifically have bec n derived only

for the restricted three-body pro)]em which is really very special

since its Ilamlt onian docs not contain the independent variable

explicitly. On th,.. other hand, preliminary studies have shown

clearly that -in the use of the barth - Moon libration points the

influences of the Sen as the fourth hody and of the Moon's orbital

eccentricity are quite important. The Hailtonian of such a probl.cm

contains the independent variable in periodic terms of short and

long periods, and especially with periods commen-urable, or nearly

so, with the principle periods of the problem. Very little is

known at all about how certain qualitative results derived for

constant !tamiltonien could be transferred to a similar problem

with time varying Hlamiltonian.

So finding a solution to the full analytical equations of

motion describing real world forces is not possib].e to date, The

best method to treat the problem of colony location is to first

develop reference colony orbits in the restricted three-body

problem. Such orbits are then studies in a. very restricted four-

body problem, wherein the motions of the Earth, Moon, and colony

are determined by numerical integration. This author has found

four orbits around L4 and L5 claimed to be stable and periodic

using very restricted four-body equations. This thesis will

attempt to test those orbits using a model more closely resembling

the real world to see if the orbits are stable, and similar. If

they are not stable, this paper will attempt to explain why they

13



are not.

The Lagran'jian points 1.1 and L5 will be used as reference

points. They are tht. stable equilibrium pointn ill the rcstricted

three-body problem for mass ratios less than .0385. Here the

satellite remains fixed relative to the other two bodies, if given

the correct in tial veloci'y. Iowever, in cislunar sie-ace L4 and L5

are no loiger euilibrium )oints although we will still refer to

colony motion about these points. Any truth model used should

reduce to the rcstricted threv-hody equations of motion. L4 and

L5 pas.es a triangulor syrmetry with each other in rc] ct ion to the

Earth and Moon so that iotion about L4 can be consider..d identicsl

to motion about 35. Exceptions to this are when perturbh-tivc

effects of other planetary bodies are taken into account. Then

the motion about L4 will exhibit slightly different solution-s

compared to moticon about L5. This author neqlects t]-b.s;e minute

planetary perturbations so when L4 is referred to, it can be

considered L5 as well.

14



II, PROBLEM ANALYSIS

Assumptions

The stable periodic orbits about L4 found to date were computed

using very restricted four-body (VRFB) models. The VRFB models

neglect the important indirect effect of the Sun, i.e., the

gravitational effect on the motion of the Earth and Moon. Hence,

the results obtained from the simplified VRFB model cannot be used

to infer motion in the real world. That is, based on VRFB results,

it is not known whether the expansion - contraction of the envelope

of motion which exists in the VRFB models also exists in the real

world. Instead the nature of the solar influenced particle motion

near L4 will be studied by numercially integrating the equations

of motion over a number of years using a model which closely

represents the real world.

The model used to test these orbits is one used by

T.A. Heppenheimer (Ref 20) in a paper locating space colonies

in high Earth orbits. In using this model the assumptions made

are:

1) The Sun, Earth and Moon are considered to be point masses.

2) The mass of the colony satellite is negligible compared

to the masses of the other three bodies and exerts no forces to

affect their motion.

3) The gravitational forces of other planets have a negligible

effect on motion and is ignored.

4) The motion of all four bodies is limited to one plane.

5) The motion of the Sun is taken to be an unperturbed ellipse

with respect to the Earth - Moon barycenter.

15



The satellite motion about L4 is far enough away from the

three other attracting bodies that the assumption of point masses

is supported. The strongest effect would be that of the Earth and

the largest term (J2 term) to h~ve effect acts to the fifth

power of the distances from the Earth making this term negligible.

Consider Mac Cullagh's Formula (Ref 13) which gives the potential

for an attraoting body of any shape at a distance from the attracting

body which is large compared with the body's over-all dimensions.

Gm -G

V = R 2R3 (A + B + C - 31)
R 2R

where I = r2 sin 2e dm

and A + B + C = 2 r2 dm

where A, B, and C are the principle moments of inertia and I the

moment of inertia of the body about a line drawn from the center

of gravity of the body to the satellite, From this equation it

can be seen that the satellite does not have to be very many

times the radius of the body away before the second term on the

right-hand side becomes negligible.

The second assumption is obvious when you consider the

tremendous resources needed to orbit a satellite of any great

size. Even a large space colony would only have to be ten miles

across to meet the needs of the people and one this size would

exert no influence upon the attracting bodies.

The effect of the other planets in the solar system on the

Sun will be taken into account by the eccentricity and formula

used for the Sun's motion. This will account for most of the

direct effect since direct effect upon the Earth and Moon will

16



not be as great as upon the Sun. The indirect perturbations are

larger and tend to change the origin to the center of mass, or

barycenter, of the Sun and planets. Schutz and Tapley studied

the effect of other planets using an Ephemeris Model. Numerical

integration was performed for L5 with a fixed step size and

compared with results of integration neglecting the planets at

the same step size. The maximum change in position was 488 km

which was small enough to not significantly affect the motion

during 2500 days considered but it would have a significant effect

over longer periods. The effect is slight enough that a small

controller could offset its influence.

Out-of-plane considerations have been dealt with using

intrinsic solutions before. It is necessary to consider effects

due to the inclination of the Moon and satellite with respect to the

ecliptic. The lunar-orbit plane is inclined to the ecliptic by 5.14

degrees. Consequently, if the colony is initially in a coplanar

orbit, there are different rates of regression of the lines of nodes

of the Moon (due to solar perturbations) and of the satellite (due

to lunisolar perturbations). Although both Moon and satellite

maintain nearly constant inclinations on the ecliptic, their

orbit planes mutually precess and, in time, are mutually inclined

by up to 10 degrees.. However, as Danby discusses (Ref 13), the

angular momentum of the solar system is almost totally coplanar

giving the system an invariable plane. Any orbit within the

system that leaves this plane will be drawn back in and the

terms due to perturbation of the Moon's inclination are periodic.

Heppenheimer (Ref 20) estimates the optimal satellite inclination

17



using phase equilibria and finds secular and inclination

type resonances to be small and stable,

Restricted Four-Body Equations of Motion

The general procedure followed to obtain real world orbits is

to use current numerical integration schemes on planar restricted

four-body equations of motion. In these equations, the motion of

the Sun is taken as an unperturbed ellipse with respect to the

Earth - Moon barycenter and the lunar motion is given by

... + xm 3"/x (1)
3 s 3

+m = - m ( s + Ys

fm - 3  s (Ym 3 3) 2)

rm r rm

r m ms3  s 3

The motion of the satellite is given by

P) xcc = .r_ _s + (xc
3 xc 3 r 3(1-t x + x\rc 3 cm

(3)

C + U(-) Y = - m (Yc-s + Ys) (c 3-m + Ym3

(4)

where the subscripts m, s, and c stand for the Moon, Sun, and

satellite, respectively. These equations are derived in Appendix

A and were used by Heppenheimer (Ref 20). They use a rectangular,

nonrotating, Earth - centered coordinate system. These equations

reduce to the restricted three-body problem is the perturbation of

the fourth body (Sun) is removed. The remaining terms are

r ms2= (xm - Xs)2 + (ym -ys ) 2  (Sun -Moon distance)

18



r m2 = xm2 + y m2 (Moon - Earth distance)

r s2 = Xs2 + ys2  (Sun - Earth distance)

rc 2 = xc 2 + yc 2  (Satellite - Eakrth distance)

rc 8
2 = (x -x xs) 2 + (y - ys) 2  (Satellite - Sun distance)

rcm 2 (x - xm)2 + (yc - ym)2  (Satellite - Moon distance)

The following constants were employed by Heppenheimer:

Solar mass = m = 329426.3 (5)
s

Solar semimajor axis = a = 389.0548
s

Solar eccentricity e = 0.0168s

Solar mean motion n 0.0748013

s

The Sun lies initially at perihelion on the positive x-axis

with its true anomaly f defined by Brouwer and Clemence's5

equation of the center (Ref 3)

f n t + Pe e 3 +I e5+ L e 7 ) sin n t
s s s 4 es 96 s 4608 s s

5 2 11 4 17 6
+ (- e - -- 4 es + 7 e ) sin 2 nst

4 s 24 s 192 s S

13 3 43 es5  25 e 7) sin 3 n t
+ ( e -- 64 512 s 3

103 4 451~ 6) sn n
+ (- e - e sin 4 n t96s 480 s s i

51097 e 7 7) sins 4608 s s

912236 sin 6 n t + 47 e 7 sin 7 n t
s 32256 s s

(See Appendix B for derivation)

Dropping higher order terms

f nst + (2e, e 3) sinta S
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+ (5) L 2 sin 2 n t + (13) e 3 sin 3 n t (6)

so that the Sun's coordinates are given by

x= i x + rp cos f
s in s s

Ys = Ym + rp, sinf

rp. = a (1- e 2)
1+ e osf

s s

Lunar motion is initiatud also on the positive x-axis. Refer

to Figure 1 for a diagiam of the initial condition configuration.

These equations of motion are cast into first-order form.

The initial conditions of the periodic stable orbits found by

the various authors are to be determined and transformed into

the preceding four-body coordinate system. Tie equations of the

four-body model are integrated using a fourth-order Adaus -

Bashforth predictor and Adams - Moulton corrector with a fourth-

order Runge - Kutta integrator as a starter. This entire

integration package, called ODE, was developed by Shampine and

Gordan at Sandia Laboratory. It automatically adjusts the order

and step size to control the local error per unit step in a

generalized sense. It is the integration package used throughout

this report on the CDC 6600 and CYBER tie-in computers at the Air

Force Institute of Technology.

Numerical experiments will not have to be performed to

determine a proper step size for integration of the equations

over a given range. ODE will optimize the step size preventing

large round-off error due to a small step size over a large

number of integration steps or truncation error due to a large

20
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L4I

Fig 1. Initial Condition Configuration for

Truth Model
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Step Sizu ovo many t1 p,11y

Other constant-; u ;ed by ]i.j onh:i!:,r which will be compnared to

thc other authc:'' coon tants

Unit 171ass 1 (ia Irth + moon) (P)

Lunar iw.; p- 0.01215

Unit distanmc2 3.8441 x ]08 m (Earth -- Moon distance)

Unit time - 4.3484167 days
T.U.

Unit vulocity - 1023.17 r/sec

Unit accoloration = 0.00273 m/sec 2

The unit tine corresponds to one radian pur timc unit inZ.5

motion of the Moon for a 27.321661 day sidarea] period an.d

0.07480133 radian per time unit mean motion of the Sin for a

365.256365 day sidereal year.
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III. WHEELER'S ORBIT

Overview of Wheeler's Work

In Wheeler's study (Ref 49) the equations of motion for a

satellite near L4 in a planar restricted four-body problem are

derived and tested. A computer algorithm for finding periodic

motion is formulated and the initial starting point of the Sun,

Moon and Earth in line is used. Rabe's periodic orbits in the

three-body problem are used as starting conditions to begin

searching for four-body motion. He employs a linearization of

small displacements about the non-linear periodic orbit. The

periodic orbit found has a period in resonance with the lunar

synodic month, 29.5305882 days. Wheeler again calculates this

same orbit by slowly increasing the mass of the Sun from zero

to its real value and presents a synodic period orbit about L4.

He proves this orbit is generated mathematically from the L4 point

and not from Rabe's orbits. A successful stability analysis is

performed on the orbit with the orbit found to be stable.

Assumptions and Coordinate System

The assumptions made using Wheeler's very restricted four-body

model (Ref 49) include:

i) The Sun, Earth and Moon are considered to be point masses.

2) The mass of the satellite is negligible when compared to

the other three bodies and it, therefore does not affect their

motion.

3) The gravitational effects of the other planets in the

solar system can be ignored.

23
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4) Tphe Motion Of itll four boisis 1ii nitt-d to one j erie

5) The Earth arid Moon move in circular orbi.!-, about their

barycenter at a constanrt rota tioni r,-te.

6) The Earth - Noon barycenter moves in a ci*rculor orbit

about the qun at a constant. rotationre.

The differe-nce Of hlr'zoelis obviouslV the assumtio~i

of circulair orbits insteUad of the actual wertn2rbed or].i ts for the,

Earth, Noon and Sun. Lator in tis repnort, Whe r'. orlt will

be repioaueed using the truth model by remroving the porturbaiiye

forces froni thc Noon and Earth orbit. The.se forces nroed to be

accounted for to correctly rnod, A Orbital iotion in cisl, -1ar spnare.

Refer to Figure 2 for Wheler's rotating coerclinatu- system.

The saitellitte orbiting about L4 remains in a rotating coordinate

system with its center at the- Earth - Noon barycenter anid the Moon

on the negative x-axis. So the coordinate system rotates with the

period of the Moon's synodic p~eriod anid the entire system rotates

in turn about the barycenter betweeni the- Earth - Moon barycenter

and the Sun. Its rotational rate is that of one sidereal year.

Constants

Pertinent constants used in wheeler's paper are

Solar mass =m =328900.12 (8)

Mean solar semimajor axis = a s= 388.82028

Solar eccentricity =e s= 0.0

Solar eccentricity is equivalent to the movement of the

Earth -Moon barycenter about the Sun.
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Solar mean motion = n = .0808489351
s

From Figure 2, 0 is normalized to 1.0 and so the entire rotation

of the Earth - Moon system with respect to an inertial frame

w = 1.0 + .0808489351 = 1.0808489351 (9)

which is equivalent to lunar mean motion.

If the mass of the Moon is set to some arbitrary valve, p,

and the sum of the masses of the Earth and Moon is set equal to

1, then the masses of the Earth equals 1 - i. These values also

correspond to the normalized Earth - Moon distance between their

barycenter. In Wheeler's study

= .0121396054

Conversion to Truth Model 4

The constants need to be converted to the truth model situation

and the initial conditions of Wheeler's orbit which will be used

to generate the truth model orbit must be transformed into the

coordinate system used for the truth model.

The initial conditions of Wheeler's 1/1 resonance orbit are

(Ref 49) x - 0.72418782459 c 0.07948061949 (10)

y = 0.8'.-68639689 0.22438007788

They were generated from the initial conditions at the L4 point

x = - 0.4878603946 i = 0.0 (11)

y - 0.8660254038 = 0.0

for ms = 0.0 (three-body problem) and increasing up to its present

value in a very restricted four-body problem. The initial con-
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ditions; (10) provide periodic motion in thc( restricted four-body

model for periods which are integer multiple,; of the lunar synodic

month. Figure 3 describes Wheeler's initial condition configuration

with the Sun and Moon starting on the negative x-sixis of the

rotating B coordinate system with angles 0 and a equal zero.
Cm

Wheeler's initial conditions nu< t be transformed from a

rotating Earth - Moon barycenter frame to an Earth - centered

inertial franme. Referring to Figure 4, the frames are initially

lined up and the distance from the origin of the truth mod(,] E

to the initial starting point is

e C e
r P/=r P3+rB/-P/E -P /3 /

where

e e

r e = x e + y e and r l =- e
-P/B -1 y 2 and Z -. 1

combining

rP/ e 1 y (12)
r: p/E = (x - P)--le + y eS2  (2

in terms of Wheeler's coordinates. For the velocity vector

e e e
v P/3 +-n/E

e ea e C ca e=vpl +w xrpl +vI +W xr~
-P/B -- P/B -- 3/E - -B3/1'

where

e
vP/B = - +  L2

eve/ =ji 0 1
-B/E S1l

ea

--3
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L4

eS rn XE)X

Fig 3. Wheeler's Initial Condition Configuration
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Ca.z

Fig 4. Transformation From Wheeler Frame

To Truth Frame
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substituting

e4/E = e 3 x (- e ) + e 1 + e 2 +e 3 x (x e 1 + ye 2 )

e
-P/E = - y) el + (-+2

Equations (12) and (13) are in terms of Wheeler's coordinates

and must be rotated into truth model coordinates. The rotation

matrix is
a e

-P/E ' [ a  -/E

-P sin cos -/E

Multiply the rotation matrix times equations (12) and (13) to

get the coordinates in terms of the truth model frame.

x = (x - P) tos e - y sin 8 (14)

Ya = (x- p) sin e + y cose

= (x - ey) cos e - ( + x - 0 i) sin 0a

ya = ( 6 - Oy) sin e + + 0 x - 0 i) cos 0

Since Heppenheimer's model initially positions the Sun and Moon

on the positive x-axis, the Sun and Moon starting positions will

be rotated 1800 to the negative x-axis and e=01. In Wheeler's

frame 0 = 1 but there is a time difference between the two frames

which will affect the transformation of the velocity initial

conditions. In Wheeler's frame the period of rotation is one

lunar synodic month, 29.5305882 days, whereas in the truth

model frame the period of rotation is one lunar sidereal month,

27. 32166101 days. So the slower truth model frame must have the

Wheeler velocities scaled down by a factor

30
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27.32166101 1
29.5305882 1,0808489351

So the transformation equations (14) are now

x =x (15)a

Ya=Y

k = - y + k/1.0808489351

aa =x - P + 9/1.0808489351

Substituting Wheeler's initial conditions (10) we obtained initial

conditions for the truth model

x = - 0.73632742999 k =-0.74215104336 (15)

y = 0.81568639689 y =-0.52873127999

Wheeler's constant (8) will be used in the truth model along

with his value of p and the transformed initial conditions. The

solar mean motion of Wheeler's model must be converted to the

slower truth model frame.

ns 0.0808489351 =

w 1.0808489351 - 0.7480133 (17)

The true anomoly of the equation of the center (6) will be

rotated to the negative x-axis by having or 1800 added to it.

The Moon initial conditions will also begin on the negative

x-axis to correspond with Wheeler's scenario.

Verification of the Truth Model

The algorithm for integration of the equations of motion

and plotting the orbits formulated is given in Appendix C.

Wheeler's assumptions are applied to the truth model to verify

that the same orbit is reproduced. Wheeler's orbit of 1/1
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resonance is shown in Figure 5. Since Wheeler's assumptions involve

circular orbits the eccentricity of the Sun is zero (e = 0.0)s

and the Moon's initial conditions are

x = 1.0 i =0.0 (18)m m

Y= 0.0 ym = =. = - 1.0 where U = (Gm +mVYm =  . my-e m

=1.0

The truth model equations of motion for lunar motion are simplified

by eliminating the perturbative effect of the Sun. Equations

(1) and (2) now become

m+ x 0 (19)

3
r

m

pm + ym =0

r
3

The equations for satellite motion (3) and (4) remain the same.

A period of rotation of the truth model is 21 or 6.2831853

radians or time units. But Wheeler's period occurs when the

bodies (Sun, Earth, Moon) are all lined up again which is a

longer period of time

2f x 29.5305882 days = 6.791174148 time units (20)
27.32166101 days

so the orbit period will be considered this number of time units

and the orbit found will be transformed in Wheeler's frame for

comparison and plotting purposes.

The equations of motion were integrated for over fifty

years and the orbit found (Figure 5) is identical to Wheeler's.

Figure 6 and 7 show three and 20 orbits respectively. Points
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along the periodic stable orbit were matched identically over

the same time period less computer round-off in the fifth and

smaller digits. The orbit is in the same orientation about

L4 with an approximate semimajor axis of 80,000 miles and

semiminor axis of 40,000 miles. This is strong evidence that

Wheeler's equations for the very restricted four-body model are

correct and that the truth model from Heppenheimer is correct

and can be reduced to the three-body problem. The next step is

to apply the full model to Wheeler's orbit.

Truth Model Application

It greatly simplifies the four-body problem to start out

with the Sun, Moon and Earth lying on a straight line. Thus,

in order for periodic motion'to occur, the equations must be

integrated forward to the exact time when these initial con-

ditions occur again and when the satellite has, of course,

returned again to its original position about L4. This orbit

being examined returns after one lunar synodic month in the

very restricted four-body case. But as the perturbations increase

by adding more segments to the truth model the orbit will no

longer return to exactly the same spot or at exactly the proper

time. The synodic period will continue to be used as a basis

for looking at orbit positions to see how they are changed by

the more realistic forces of the four-body problem,

Perturbations were added one at a time to observe the

effects upon stability and periodicity noting that one effect

could offset part of another one when all the forces are inter-
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acting. The eccentricity of the Sun was input and the orbit

integrated for ten years. Figures 8, 9 and 10 depict the orbit

for one, three and twenty periods respectively. Note there is

only a slight perturbation away at each position compared to the

previous orbit. The change from one orbit to the next is at

most 650 km anywhere in the orbit and the basic orbit shape or

position about L4 does not change after ten years. Orbits after

ten years are no more than 1000 km away from the first orbit and

tend to return to the starting orbit,

Next the perturbative effect of the Sun upon lunar motion

is returned to the problem by using equations (i) and (2). The

orbit is now highly perturbed changing shape somewhat and up to

4000 km off initial orbit position the second time around. The

orbit slowly begins to drift out of the quadrant of Wheeler's frame

after only thirteen months. This is not so damaging, but the

changing shape of the orbit shows little consistency in the

orbit, as Figures 11, 12 and, especially, 13 will attest, After

ten months the orbit approaches the Moon close enough to be

thrown out of the Earth - Moon system completely.

The truth model appeared to prove the Wheeler orbit

unstable. Analysis was made of the data to try to determine

the cause of the instability. The eccentricity of the Sun is

removed with little effect on the orbit, showing that the

direct influence of the perturbing Sun does not change the

stability of a periodic orbit with its small deviations. The

two terms of the Sun's effect on lunar motion were analyzed

and found to offset each other to such a degree that removing
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one or the other cat; s thie Qrbit tQ d(torior.-tu euen ro)e

rapidly, Finally, the phase difference between the Sun and

Moon is examined in the truth odl Thi.; is thought to be

the primary cause for the loss of stability. A program is

written to minii:Lze the diffcrenee in the pha!( , of the tw'o

bodies by adju-,ting the solar mean motion. If the Sun and

Moon were held in )hac;e, this author hr]ieves the stabi]ity

would return. The o P'tinisation was not very efficient hut

after three cycles had improved stability 50'. The crbit is

indeed sensitive to the Moon getting out of phase with the Su.

During this phase analysis an oversight cane to light.

Although the lunar motion no-i includes perturhing force s of

the Sun to force the Moon out of circular motion, the lun-,ar

initial conditions are still the circular orbit conditions

determined earlier (18) . Elliptical initial conditions must

be found. Kolenkiewicz and Carpenter (Ref 2G) developed a

model of the Moon's orbit using a three-body system which is

explained in detail in the Chapter Four. Since a perturbed orbit

was obtained using the two primary bodies, Earth and Sun, which

affect it, this orbit is considered accurate enough to supply

initial conditions.

x = - 0.99220573479 c = 0.0 (2])m m

Ym = 0.0 Ym 1.00990709043

When these perturbed lunar initial conditions were first input,

calculator accuracy to eight places were used.

x = 0.99220574 x = 0,0 (22)

m m
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= 0.0 m = -1.01055416Ym

Now the Moon and Sun are more in phase and the orbit is reasonably

stable. The orbit varies by no more than 5% over the first 24

months and the orbit shape or size does not change. It varies

by no more than 2% from orbit to orbit. Refer the Figures 14,

15 and 16, for plots of the orbit. The equations of motion are

integrated for over 100 years and the orbit moves slowly around

the Earth in a clockwise direction away from the Moon, returning

to the original orbit about L4 after 94 years with agreement to

within three decimal places. Refer to Figure 20 which plots one

point on every fourth orbit for 100 years. It is sixteen years

before the orbit begins to leave this quadrant.

Even more surprising results occured when the lunar initial

conditions from the computer (21) are input. Although these

initial conditions differ only in the fourth decimal place, the

orbit (Figure 17, 18 and 19) now moves slowly in a counter-

clockwise direction toward the Moon and would again return to the

same orbit about L4 after 57 years. The orbit begins to leave

the quadrant after ten years but both of these orbits will move

into the Moon's vicinity and be thrown out of cislunar space,

The apparent drift of the orbit is extremely consistent. The

Wheeler frame for plotting the orbits is investigated to dis-

cover some reason for the apparent drift. The Wheeler frame

rotates at a constant rotation rate to coincide with the lunar

synodic month. The elliptical motion of the Moon and the

variations in its rotation rate is causing the reference frame

to drift rather than the orbit. A new algorithm is formulated
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to lock the reference frame to the Moun whe(Eev'ur it is and keel,

it on the neg tivc x-axis. When this in done thu Whe(]er truth

model is found to be very stable with less than a )% chanye in

position over 45 monthz and 10% over seven years, IL clnm Ijuc

from orbi.t to orbit no more than "000 }im. The orbit slowly

wanders back and forth for over 100 years and never ]c.; the

L4 quadrant. The orbit slow.y changes shalpe OVe'r the years

depending on its position in the quadrant in relation to the

other bodies.
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IV. KOLENKIEWICZ AND CARPENTER'S ORBIT

Overview

Kolenkiewicz and Carpenter (hereafter termed K & C) use a

restricted four-body model in which the three principle bodies are

periodic, coplanar, and obey the equations of motion and have no

mean orbital eccentricities (Ref 26). They investigated by

trigonometric series the possibility of a coplanar monthly

periodic motion in the general vicinity of L4. This investigation

of the Sun perturbed Earth - Moon triangular point yields, in

addition to a small unstable orbit, two similar but not identical

stable periodic orbits about 50% larger thar Schechter's stable

orbits, one synchronized with the Sun ir, its motion around L4;

the other 1800 out-of-phase. The two stable orbits are periodic

with respect to the synodic system, make one loop about the

triangular point, and are elliptical in shape (see Figure 21).

The orbits have an approximate semimajor axis of 90,000 miles

and a semiminor axis of 44,000 miles. The major axis is

perpendicular to the line joining the Earth and L4. The particle

describing the orbits is synchronized with the Sun so their

angular positions almost coincide when the particle crosses one

of the axes of the ellipse.

Assumptions and Coordinate System

The assumptions made using K & C's restricted four-body

model include:

1) Sun, Earth and Moon are considered point masses.

2) The gravitational effects of other planets are ignored.

3) Only gravitational forces are considered.
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4) The motion of all four bodies is limited to one plane.

5) The Moon's orbit is perturbed by the Sun and Earth alone.

6) The Sun's orbit is perturbed by the Moon and Earth alone.

The only difference from the truth model is the unrealistic

orbit obtained for the Sun which gives it an approximate

eccentricity of only .0007313 instead of the actual value of

.0168. This should have little effect since removing the solar

eccentricity from the truth model on Wheeler's orbit gives a

slightly larger orbit and a bit less stability.

The coordinate system (Figure 21) is the same as the truth

model, an Earth - centered inertial system with the Moon and Sun

lying along the positive x-axis initially and the triangular

point lying 600 off that akis. There is another internal coordinate

system, for locating the satellite in relation to the triangular

point rotating in advance of the Moon. Its origin is located at

* = 600; r = a = 3.831841237 x 108m (23)
-o

from

n32 a 3 = Gm
3 e

Constants

Many of the constants are in the SI system and will remain

or be converted into SI until calculated by the computer but

values corresponding to units previously used will appear in

parenthesis where applicable.

mass ratios: m =m 1

m 81.30
e

m
e
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therefore

Solar mass r m = 328912.42 (24)

= .01215067

also

Mean solar seirinajor axis a = 149600 x 106 rn

(= 388.8235 mean E - M distances)

Mean lunar semlitajor axis - a - 3.847487965 x 108 D)m

( 1.0 mean E - M distance)

Solar mean motion = n 129597742".3P
s Julian Century

= 2.0 x 10- 7 radians
i Sec

(= .08084893 radians
time unit

Solar mean motion n = 1732559353."56
m Julian Century

= 2.66 x 10- 6 radians
See

(= 1.0808489 radians

time unit

The mean motions correspond to the lunar synodic month,

Geocentric gravitational constant =

Gm 398603 x 109 m
3/sec 2

since

m = .98784933

e

then

= 4,0350283 x 1014
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Conversion to Truth Model

K & C's procedure used in obtaining a solution for the

Earth - Moon - Sun model as well As for the periodic triangular

point orbits is based on Musen's (Ref 30) method with the per-

turbations represented in trigonometric series with numerical

coefficients. The solutions of the equations are given in the

following form (see Figure 21)

r= (i=a) r + w (25)

where a and 8 are the components of the perturbations, r is the
-o

position vector in a fixed reference ellipse, and

w = (1/n) (dr /dt)

The mean motion, n, is given but can be calculated as a check

from Kepler's law which is n2 a2 = P 2 where a is the semimajor

axis of the reference ellipse. All the reference ellipses used

have zero eccentricity (circles) so r = a.0

The functions a and 8 are represented by the trigonometric

series

OD c S= (ak cosk8 + a k sin ke) (26)
k=0

S Sc os + s
0 ( (8 cosk + a sin k8) (27)

k=0

where

e = (n -n s ) t.
m s

The basic inertial coordinate system matches the truth model

and needs no transformation. However, the initial conditions need

to be determined from the orbits of the Sun, Moon and satellite

and these are described using constant coefficients of a
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a

trigonometric series (Tables 1 - 4). The initial conditions of each

orbit can be determined from the coefficients at t = o.

Expanding on equation (25) and stating the velocity equation, r

r = (1 -- ) r + B ,/p+ -a- I--2 (28)
n r

2 [1- 2 r + 0 + + lcj/P a2 (29)

n 3  nrn r 3o

where r is in the a, direction in the truth model frame. The--- o

values of a and $ can be found from equations (26) and (27) for

t = o and 6 = 0* for the Sun and Moon and 6=600 for the satellite.

The equations for & and B are

=(nm - n ) ( kak c sin kO + kk s coskO) (30)
k=O

B= (n-n) (k kc sin ke + k a coske) (31)

k=O

Solutions for the motion of the Moon and Sun are found using

K & C's same four-body equations. Starting with the Sun constrained

to move in a circular, coplanar, Keplerian orbit with respect to

the Earth, the equations of motion are solved. Trigonometric

coefficients a and $ describing the Moon's perturbed orbit are

thus obtained. The role of the bodies is reversed, the Moon's

motion is constrained to move in the perturbed orbit defined by

" and B, and the equations of motion for the Sun are solved. The

" and B, coefficients describing the Sun's perturbed orbit are thus

obtained. The roles of the bodies are reversed again and again,

each time using the latest acquired a and 0 coefficients of each.

Ultimately the values of a and B converge for each body. The
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Table I Thrce-body sun solution, p o f Table 2 Three-body moon solution. p - 0*
k *A(,, X 10& 06,01x 10, k a&

(
,, X 104  

Ok'  X 10'

0 0.045105 0.000000 0 --006.915740 0. 000000I 30, 949M6 31. 4928,51 1 2087. 606767 -609,07634.5
2 -0.004947 -0.005012 2 -7173.506863 10202.254-541
3 0.047329 0.047319 3 - 7.507078 7. f, 12259
4 -0.000005 -0.000005 4 6. 028443 5.719334
5 0.000184 0.000183 5 -0.003392 0.005816
6 0.0o0000 0.000000 6 0.032454 0.027566
7 O.OoO01 0.000001 7 0.000011 0.000025

8 0.000187 0.000163
9 0.000000 0.000000

10 0.000001 0.000001

Table 3 Periodic orbit I, i= 600

k ap'  x 106 at,"') X 10, dk(,) X 10' 04(' X 106

1) - 19171. .5t 12:; 0.000000 74753. :4276S 0.000000
1 187801.131)597 1717-.314016 -13120 763974.S -3779S6. t16521S
2 11131.030603 -3722. $720.),5 23:)2.545921 1S027.0134615
3 -2S74.47241-4 737.56,NO28 -W37.564775 -2521.769547
4 582. 134781 -176.9SS257 173.574S50 518.179570
5 -123.327707 47.337357 -46.872029 - 110.607813
6 26.570848 -12.692022 12.244230 24.010789
7 -5.830085 3.271408 -3.092692 -5.355760
S 1.327555 -0.827212 0.781757 1.245S72
9 -0.314593 0.214693 -0.205945 -0.299764

10 .0755'4 -0.058253 O.056669 0.0722.70
11 -0.017829 0.016064 -0.01580 -0.017002
12 0.004114 -0.004335 0.004214 0.003918
13 -0.000955 0.001136 -0.001100 -0.000914
14 0.000230 -0.000296 0.000288 0.00022
15 -0.00004-6 0.0000SO -0.000078 -0.000055
16 0.000014 -0. 00002-2 0.000022 0.000013
17 -0.000003 0.000006 -0.000006 -0.000003
18 0.000001 -0.000002 0.000002 0.000001

Table 4 Periodic orbit II, v - 604

k a 'h(e ( ' () X 10 p xI 06' (c) X 106 O0, X 10'

0 -18160.912624 0.000000 72212.688988 0.000000
1 -183627.3576:39 - 16818.088205 11392.917179 370250.263893
2 10460.90070S -3371.790401 2116.289-582 17696.741894
3 2715.813738 -648.117571 563.594410 2418.999900
4 54.831763 -152.630065 151.103055 487.952665
5 114.117818* -40.353414 40.270023 102.700732
6 24.309814 -10.697742 10.365541 22.014409
7 3.274431 -2.716444 2.571492 4.851307
8 1.187793 -0.674485 0.637277 1.115552
9 0. 278619 -0.171971 0.164972 0.265686
10 0.066360 -0.046021 0.044817 0.063541
11 0.015.54 -0.012554 0.012271 0.014861.
12 0.003576 -0.003350 0.003259 0.003409
13 0.000826 -0.000865 0. 00038 0.000792
14 0.000198 -0.000222 0.000215 0.000192
15 0.000049 -0.000059 0.000057 0.000048
16 0.000012 -0.000016 0.000016 0.000012
17 0.000003 -0.000004 0.000004 0.000003
18 0.000001 -0.000001 0.000001 0.000001
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initial conditions of the Sun formed here will not be used because

the computed approximate eccentricity is .0007313 which is not close

to the actual .0168 (Ref 20) since other forces obviously act on

the Sun to perturb its orbit besides the Earth and Moon.

The lunar initial conditions (21) are computed using the

coefficients from Table 2, equations (26) and (31), r = a

and

2 = n 2 a 3=4.0299 x 1014 m3/sec 2

m m m

Since 2 = G (mm + m e) also, this was used as a check using values

from (24).

The satellite initial conditions for both orbits are computed

in a similar manner using the coefficients from Tables 3 and 4,

equations (26), (27), (30) and (31), r = a from (23), 8=600,

and p 2  Gm = G (m + m) from (24) and the direction of r and

w are

r = a (cos 8 a, + sin 8 a2 )

w= (1/n) F2 (- sin 8 + cos ea)
r _
0

The initial conditions of Orbit I which is synchronized with

the Sun in its orbit about L4 are

x = .7504475430226 x = - .7370404960431 (32)

y = .8127310078686 = .5259745433478

which is the same as Wheeler's transformed conditions (16) to two

places except the x value which is about one-hundreth off,

The initial conditions of Orbit II which is 1800 out of

phase are
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x = .07542634277321 c =-1,003173415668 (33)

y = .9507111102549 = .254983014774

Figure 21 shows the plotted coefficients of the Sun, Moon, and

the two orbits compared to Schechter's Reference I orbit (Ref 36),

Truth Model Application

Both orbits are run with the initial conditions and constants

stated for over 100 years. Orbit I (Figures 22, 23 and 24) begins

with an orbit the same shape but about 5% larger than the Wheeler

orbit. The orbit once again changes shape very slowly and to a

slight degree as it moves around the Earth due to its orientation

to the body. But this orbit drifts faster than Wheeler's orbit.

The orbit moves approximately 35,000 km per revolution (month) and

begins to leave to quadrant after 17 months. Figure 25 shows a

particular point on the orbit each revolution for 34 years if the

satellite is not thrown out of the system by a close approach to

the Moon. Once again this apparent orbit drift is deceiving

because part of it is caused by the Moon drifting off the x-axis

of the Wheeler reference frame. When the problem is corrected, the

orbit continues to drift but much more slowly, averaging less than

20,000 km per revolution and remaining in the quadrant for seven

years. Within a year after leaving the quadrant the satellite is

thrown out of the system by a close approach to the Moon.

Orbit II is integrated for over 100 years (Figures 26, 27

and 28). The first revolution is the same size as Wheeler's

truth model orbit but it does not close on itself, missing by

10,000 km. The orbit begins to depart the Wheeler frame L4

quadrant at about the same time as Orbit I, but unlike the first
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orbit, Orbit II rapidly leaves cislunar space after that, The

same correction for the Wheeler frame drift was made and the drift

rate of the orbit once again is found to be slower than anticipated.

The orbit drifts an average of 30,000 km per revolution and now

doesn't leave the quadrant for over 10 years instead of an apparent

19 months. Orbit II drifts faster than Orbit I but still has the

property of being relatively stable. The shape of the orbit

indicates the possibility that with slightly different initial

conditions the orbit might come much closer to closing upon itself

and, thus, more stable. It is interesting to note that when both

orbits initial conditions are entered into the VRFB problem that

neither is periodic or very stable.
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V. BARKHAM, MODI, AND SOUDACK'S ORBIT

Overview

Barkham, Modi and Soudack (hereafter B, M and S) offer a

theoretical solution to a four-body problem (Ref 1). In their

model a small particle moves in the vicinity of two masses, forming

a close binary, in orbit about a distant mass. Unique, uniformly

valid solutions of this four-body problem are found for motion near

both equilateral triangle points of the binary system in terms

of a small parameter , where the primaries move in accordance

with a uniformly - valid three-body solution. Accuracy is

maintained within a constant error 0 ( 8) and the solutions are

uniformly validas tends to zero for time intervals 0( -3).

Orbital position errors near L4 and L5 of the Earth - Moon system

are found to be less than 5% when numerically - generated periodic

solutions are used as a standard of comparison. Once again the

lunar synodic month is used and a 2 periodic stable orbit is

found which makes two cycles per month. It is a small orbit with

a semimajor axis slightly over 6000 km. The theoretical orbit was

checked with numerical solutions of four-body perturbation

equations of motion, from which the theoretical solution is

derived, simplified to three-body and with numerical solutions of

the theoretical three-body equations where three-body solutions

of the Earth and Moon orbits are used to simplify the problem.

The two orbits computed have very little difference and they differ

from the theoretical solution by no more than 5%.
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Assumptions and Coordinate System

The theoretical model assumed

1) Sun, Earth and Moon are considered point masses.

2) The gravitational effects of other plancts are droplped.

3) The motion of all four bodies lies in one plane.

4) All perturbations on the satellite except those caused

by the Sun neglected.

5) The Sun orbits in circular motion.

6) Distance to Sun is decreas;ed from infinity to present

distance.

As the Sun's distance increases to infinity the problem reduce-s

to the three-body problem and the particle contracts to the

libration point. The checks to the solution try to show that the

Sun causes the primary perturbations and the satellite is relatively

insensitive to small variations in the orbits of the Earth and

Moon. This may be true but indirect effects of the Sun upon the

Earth and Moon may cause large enough variations in the orbit to

affect long term stability. A circular Sun has only a slight

effect on the orbit.

The coordinate system is identical to Wheeler's system (see

Figures 2 and 29) with a rotating system with the lunar synodic

month about the Earth - Moon barycenter. The Moon and Sun start

initially on the negative n-axis or x-axis.

Constants

For the Earth - Moon = Sun system the following constants are

given (Ref 1)

72

_________________



za

H

PS L P__ _ L PC__

0Literal Solutionx, 1 o ' t • 0 .. .2

/ i//

----- a- - x loll

-0.4 /

t -M Fig 29. Barkham, ]Modi, and
.. Soudack Results



Solar mass - m = 329794.6384

S

Mean solar semimajor axis = a = 389,17242

Solar eccentricity 0.0

Solar mean motion =n = .0808489
i s

Lunar mean motion n = 1.0808489
m

Pm = .01215032

Conversion to Truth Model

The solutions to the satellite and Earth orbits are given by

trigonometric series and formulas are given to convert Earth to

Moon coordinates. To find the initial conditions substitute t=o

into the series solutions. Initial conditions for the satellite

are

= -.48313894 = .01133797 (34)

= .87089898 = .0044541

and for the Earth are

= .01205487 = 0

n =0 = .00023703

converting to the initial conditions for the Moon (Ref 1)

=-.98008937 =0 (35)

0 =-.019272

The same translation is used on coordinates (34) and (35) as for

Wheeler's system

r-l -2

r =(~ ~ a1 + + P ~) A2

And the velocity components have to be scaled down for the time
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difference in the i-criods of rotation used so divide by

1.0808409351, The satellite initial conditions are

x - .49528926 k = .86040910 (36)

y = .87089898 y= .49116333

and the Moon initial conditions are

x = -. 99223969 = 0 (37)

y = 0 y = 1.0100701

Truth Model A~plication

The satellite is unstabl]e when the truth modfl is applied to

it. It slowly begins to orbit L4 and after half a period wanders

toward the Moon until being thrown out of cislunar space (Figure

30). The satellite travcls 50,000 km in the first lunar synodic

month. When the Moon is locked to the x-axis to eliminate drift

the orbit is found to be more stable, only increasing its orbit

size 10d over the first 25 months. But the orbit shape is much

different making a small 3/4 orbit in half of a synodic month

and a larger 3/4 orbit in the next half of a synodic orbit.

This makes a very irregular orbit shape that would not lend

itself to an elementary rendevous with a satellite in this tight

orbit. The smaller 3/4 orbit has a semimajor axis of less than

4000 km. It is over seven years before the orbit of the satellite

drifts out of the quadrant and is thrown out of the system shortly

thereafter. Note that the orbit is unstable in VRFB system, The

initial lunar conditions computed by B, M and S are very close

to those calculated by Kolenkiewicz and Carpenter.
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VI. R .rUJLTS

Discussion

With the four--body truth model, none of the orbit, found are

periodic bit some do nearly close on thcm:;clves and mainta :n a

period of one, lunar synodic month. Wheeler's orbit is stable

enough to not require a control system to maintain it in the

orbit for at least 20 years (zigures 31, 32 and 33). It will

stay in the vicinity of L4 "or over a century and may never leave.

The transients are small enough for space colonies but may be large

enough to affect pointing in a particular direction for military

applications. This would have to be investigated; if the minor

perturbations could not be accurately predicted or there are

fast variations, then a small controller might be needed to

maintain an exact orbit but it certainly would not have to be

large in size or expensive in fuel consumption.

Kolenkiewicz Orbit I was close to Wheeler's but a one percent

error in initial conditions is enough to cause it to be marginally

stable (Figure 34). The reason they didn't derive the same initial

conditions as Wheeler is probably due to the solar orbit used

which is unrealistically perturbed by the Earth and Moon alone.

The same holds for Orbit II, which is also marginally stable

(Figure 35). It the initial conditions were derived using a more

accurate model, a Wheeler orbit beginning on the opposite side

of the orbit might be found.

Barkham, Modi, and Soudack's orbit is marginally stable and

not suitable for military or civilian use. It is started too

close to L4 and it has been proved by Schechter and many other
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nQtCd individuals that any particlc near L4 will slo..:ly Le ejected

from the vicinity (Figures 36, 37 and 38) . Both of the numrical

orbits derived to check B, M and S's orbit %.ere not truth model

checks. The first was fromti the four-body pertui:bation equations

but they were simplified by driving the distance to the Sun to

infinity. The other numerical solution was using a set of three

body equations formed in the same rmanner as the four-body which

came up with the less than stable B, M and S orbit. A stability

analysis should have been performed.

The fact thaL Wheeler's orbit was stable in the very restricted

four-body model (circular Sun - Earth - Moon orbits) and K & C

and B, M & S's orbits were unstable gives evidence that the

VRFB model. is a valid simplified model to test or search for

orbits which would be relatively stable in the real world.

Wheeler's orbit tends to support this. The truth model also

decreases the VRFB orbit by 25%. Wheeler's orbit now has a

semimajor axis of 60,000 mi and semiminor axis of 30,000 mi.

Figure 39 shows the movement of one particular point on each

orbit for a period of ten years showing that the orbit moves very

little in the quadrant.

It was also found during the analysis of forces on a satellite

about L4 that the phase between the Moon and Sun is the most

important factor in the stability of the satellite's orbit, The

Moon having its orbit perturbed by the Sun is the driving force,

Remember that Wheeler's orbit wll exist only if the satellite

is initially injected into the orbit with the Moon and Sun in

phase on the x-axis.
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Recommendations

The truth model itself could be improved in accuracy using

Ephemeris Tables for accurate lunar and solar initial conditions,

using the most accurate constants to date from the various authors,

and using more terms to higher powers for the equation of center

which determines the solar coordinates.

The next step would be to investigate out-of-plane considera-

tions and apply a third dimension to the truth model. If the small

transients need to be kept to a minimum for the nearly stable

Wheeler orbit, then an optimal plane of rotation for the orbit

needs to be found. It could be in phase with the plane of the

Moon's or with the the plane of the Sun or somewhere in between.

The 1800 phase orbit could be investigated using a Monte Carlo

analysis in a very restricted four-body model to see if a stable

orbit exists and then apply it to the truth model..

Last of all, look at attitute problems in the Wheeler orbit

due to the small perturbations of the nearly stable orbit. The

initial conditions could be varied slightly and expanded to see

if there is a small family of orbits that exhibit stability in

that region.
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APPENDIX A

DERIVATION OF HEPPENHEIMER'S EQUATIONS OF MOTION

Let a system on n bodies consist of point masses m. at r.,1 --

where i = 1,2,...n and the r. are expressed with respect to an

inertial frame of reference.

Let r. =i

Then the equation of motion of m. is
1

n
m.. =

- Gm. E m. (r. - r.) (i)

j~l J -1 3I--i~ j=13-ij J

Applying Newton's Law of Universal Gravitation, the force

F exerted on m. by m. is
1 J

S-G i i.
F = r..

31r,.Ji

The vector sum of all such gravitational forces acting

on the ith body is

F m2 G m, m
F(r3 i)_ 3 (rK2i) -- • .3 (rni)3 i r. -2 r.

rli 2i ni

This equation does not contain the j = i term since the

body does not exert a force on itself.

Simplifying
n

F -G m. E M. (r..) (2)
- 1 j-l -- -31

jjl r..3
- 3
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Comparing equation (2) to equation (1) with the assumptions

that the mass of the ith body remains constant and drag and other

external forces are not present, we obtain

n
r. .G ) M. (r (3)

-- j=l 3
j~il r,.i

If m2 is a satellite and m1 is a planet, writing equation (3)

for both

n
m, (ri M.(4)i =-G S 7 - r..

j=2 3r.
Ji

n

rj (G r. ) (5)2j=l 3 2

j32 j2

And since r12 r 2 - r so that E12 = r2 - ri" Substituting

equations (4) and (5) into thi. last equation

n n
r E M. (r. 2 )  + G E M. Cr

l2 j=l 3 -92 j=2 3 ji

j#2 rj2 rjl

Expanding

F G m 
n

r12 =- 1 (rl ) + G E M' Cr)

S123 
j=3 r j23

n
- G m2  (r21) - G . (r1)

3 2 j=3 -J[ 21
3  rj 3

Combining the first terms in each bracket since r = -

:F = G (mI + m2  r-2 n G mj

r12 rj 2 r jl3
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(2 = G 2 m  -12 r -

rl1 j; 2 j3r .)

Consider an Earth - Moon - Sun system with a colony satellite

in the vicinity of the lagrangian pqint L4 or L5. Refer to Figure

1. Assume the following:

1) Coplanar Orbits

2) Mass of the satellite is negligible compared to the

masses of the other bodies.

3) The Sun, Earth, and Moon are considered point masses.

4) Ignore effects of other planets, upon the satellite.

From Figure 1

r s x a +y a2--s s- s2

r =0
--e

r =x a + y a

r =x al + yc a2

r =s (x m - x )' 21 + (Ym Ys) a 2

r = (x c - x ) al + (yc - Ys ) a2

r (x -xA
-vs c s

r (xc - x) a 1 + (Yc Ym) a2--cm c n - c -

and

rm2 m2 + ym2

rs 2  x s2 + ys 2

r 2 x 2+ y 2
c c

m s  ( m _ ) 2  y i. y )
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Fig 1. Heppenheimer's Four-Body Configuration
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rcs = (xc  xs)2 + (yc -
s ) 2

rcm 2 = (xc - Xm )2 + (yc - m )2

Using the perturbative function equation (6) for lunar motion

where- = r'

G (m e + m m ) M r m m -  r  s rG m --inrs

r 3 r 3  r 3in mss

Where constants mmm

m i-i
e

G 1

So equations for lunar motion

X-DIR: x + m =-m m s+-- Xs + x (7)
m 3rs s

Y-DIR: 7m + Ym =- M Ym -Y + x

r 3  ( rms r) (8)

Using equation (6) for the colony satellite motion 0

F -G (m + mc) G m (rc - r r-c e c - m ( -ri --C )
r3 r 33

rc cs

m r r r

r cm3 rm3

Using the same constants and m negligible compared to me

S+( ) r m r- r r r +-C - s --s + (r C -M -M

r3 r 3
c cs s

X-DIR: x.+1 0  - m ( x s + )S ~ mx )

(9)
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Y-DIR; :F + 1 1,. 
_ _ _ In% ( Ycc- Ys + Y ) 7 m + '

C c 3 r s2 cm3 )

(10)

Cast these four second order differential equations (7 , a

9 and 10) into eight first order state equations

x x

x 2xY
x3 m

x
4 YM

=, (11)
x 5x

x 6Y

x87

So that the following differential equations result

1 = m

k2 = m

3 = m

4 = m

k5 = c

6 =

7 x c
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In terms of the state variables, the equations of motion

become

kl =x3 (12)

x2 -x 4  (13)

3s ( ix Xs (14)

x4 = 2  -m 2x +y

3 3 3
r m  r ms r s

--3  -2 ( 15)

x5 =x 7  (16)

x6  x8  (17)

7 -iu) x 5 - m x7 ) x5ms x5- s + x) 1 5 xl+ x
3 3 3 rrc r r ( r r

cs rM

(18)
is =  3 (i-P)r x 6 -ms x6 - s + YS3rc - x. - X 2-  + x.m3

3 S 3___I _ _-(1-u) -m Xr cm3 r 3)

(19)

Where

rc3 = (x52 + x6 2) 3/2 (20)

3 2 2 3/2
* [x 5 - x ) + (x6 - y2) (21)

3 = ( l 2 /2rc [ (x 5 - 1  + (x 6 -_x 2 ) 2 (22)

3 (X2 Y2 ) 3/2
rs  ( + (23)

3 (2 x22 3/2
r = (xT + ) (24)

3 223/
rms3 x [X 1 xs-)2 + (x-2 ys)21 3/2 (25)
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APPENDIX B

DERIVATION OF THE EQUATION OF CENTER

Sun coordinates are needed for the satellite equations of

motion in the truth model. Motion of the Sun is defined by the

equation of center.

A fixed system of rectangular coordinates with the origin in

the center of the Sun has equations (Ref 3) of motion

d 2  _ 
(1)

dt2  r

dt2  r3  Sy

d2z z DR
t 2 +2 r3 az

where m = 1, m is the disturbed planet, m' is the disturbing

planet, P = G (1 + m) and

R =)[( X 2 + ' 2 + ' Z 2] 1/2 x X + y y + z zR~~~~- = 3( y-y z-z '3
r

Perturbed coordinates are

X= x 0+ y= yo0 + 6 z =

+~ +6 yy + 60 X y Z
x=i +6._~~ _9+6. z=6.

with the x-axis directed toward the perihelion. Substracting the

equations of elliptic motion from (1) yields

d- (6x) + )-3 (X + 6x) x 6R

dt 2  r 3 6x
0

(same for y and x components)
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Develop the second item in the left-hand members in powers of

2d 3 U x o ( x dEx: - (ax) + (x) 3 (x 6 x + 6 y) = G3x 25 o

dt2  r r
0 0

and expand the partical derivatives of the disturbing function in

Taylor's series in terms of R0

2 2 2

Ex: G = R 3 2Ro 2RO D2RO
x p--+ d x + - -- dy + - z

0x 0 ax 0 x0 0 0

+ P e(9 xo - fr Xo ) 6 x2 + (3 O 15 Xo YO) 6x 6y
-5 2 7 5 7

r r r r

+( o - 15 x O2) 6 + 3 o Sz 2

2 5 -2 7 2 -5
r r r

Integrating the expanded equations (first order approximation to

solve second order of disturbing forces, etc.) to find a formal,

explicit solution yields expressions containing the terms

8XC +C t+ cos L + cos 2 L + cos 3 L +...x Cx ox Clx C2x C3x

+ S sin L + S Sin 2 L + S Sin 3L +...
lX 2x 3x

(Sy is similar)

where C and S are numbers, secular and terms factored by t
2 or t3

are ignored. Time is the independent variable, Converting to a

true anomoly
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1
6v - (x 0y - yo 6 x)

r
0

C + Cot + C cos L + C2 cos 2 L + C3 Cos 3 L +..

+ S sin L + S2 4in 2 L + S3 sin 3 L + ...

Expressing a finite increment of v As a function or arbitrary

increments of the four elements w, n, e, U) and w - = L = nt0

for the Sun as a disturbing body

1 3 5 2 11 4v nt + (2 e + 4 e ) sin nt + (4 e 2 e 4 ) sin 2 nt

+ 13 3
-2 e sin 3 nt for 3rd order eccentricity

Use this to calculate the Sun coordinates starting at perihelion.

x=r cos v 6y = r sin v0 0

therefore

xS = V x + r cos v

s m s
Ys = vJ ym + r s sin v

where

rs = A S, - es2)/(l + es cos v)
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APPENDIX C

COMPUTER PROGRAM TO CALCULATE OR1lITS

IN THE RESTRICTED FOUR-BODY TRUTH MODEL

This appendix contains the computer routines used applying

Wheeler's and Kolenkiewicz and Carpenter's orbital data to the

truth model. Barkham, Modi, and Soudack's routine is not displayed

because of its similarity to Wheeler's routine. The computer

language utilized was rortran Extended Version IV, and all work

was accomplished on the AFIT CDC 6613 and CYBER 74 computers,

Several comment statements have been employed to aid the reader

and smooth the flow of the program. ODE was the integration

package utilized in the program. For the integration steps, one

time unit corresponds to 4.3483774 days. Data cards were input

into the Kolenkiewicz and Carpenter routine containing the a and

0 coefficients from Tables 3 and 4.
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PROf-,kAM GiADU 74 /7 It opti 9TN bi*74L.,

Wheeler Truth Model with Subroutines

±PROG At, GRO~NIT/'0TUgE~l4UgvF6OTU,0-
EXTEUNAL Fi
CO MMON .139A,''S9P: IUp F

DI MEN S!OO IWO ZK(1- ) ,WrRK GjC)

AS=3169~620280.
ES=o.t 8

is P1=3a 141!926539)

XPIAX: C.
YM1AX= -e

XC 2): C
XC 3): £

NEON: 8
TzE

31 ~TO UT= 2ou-,Pl#i @L5: 548931F±/Vi3@0
DELT:1 OLI

IF LAG :1
35 KOUN7=i

TM(KCUN~T)=T
X.1 C KC UNT) =X(I)
VII (K(CUNT) =X (2)
VX MI (K OUNT ) =X (3)

401 VYM(KOUNT)=X(4)
XC (KEj UNT) XC(F)
YC (KC UNT) X(C.)
VXC(MOUNT) =X(M
VY C(K OUNT )=X (6)

.5 AxAT N (X (2)/X (1))

FS=Wo*TC*-o2.E *Fz.-S** ')*SINNsr) +±.2Es b2*SIN(2*NS*T),(i-.
m*ES' 3*SIN(3*4 34 T)

54 FS=FS +PI

XS=hU-t XC±).RSPO COSC(FS)
YSHIJ4XC2) +RSP* SI1(0 I)
PRINT* q~T' ..,r," . XS 20 ",X.0 Ylz ",ys

YW (KOUNT) =-X(3) *514( A) +X(b) *COS 0 )
VXW(KOUNT) =(X(B 4 Yw( POINT)0)0i.0 938.!1



3 CALL Gc(F9--- jX T T9E E-qt1 R LG OKIOK
5] 1F(FLIGoE~o.) GO TO r,

!F(IFLAG*NE*Z) GO TO 2
KOUN' =KOUNT+i
IF(KCUT ,E2.Zir,) GO TO 4
TU7T TOUT +0 EL T

GO TO I
IA CONtTINUE

00 6 IzisKOUNT

t) UN1INUE
PR 1NT 4tos ATELL1TE DRt0 IT*
DO 7 I=i, KOUNT

-GIQ *I1,5X g'VY= ",G1,8 oil)
7 CONTINUE

FRUNT *,"W HEELER OR1IT"
83 00 9 1~i,I(JUNr

WRITE 6,513) T,'(),XW(Tr),YW(I),V(WtL) ,VYW(I)

9 CO !o41 N U E

AA(Q) =)W(I1)
B93 (1) =Y W(I1)

12 CONTINUE

CALL FLO0TSC(AA'9,J'Pl)
2 PRILNT * *6IFLAG= ",IFLAG
3 CONTINUE

ST OP
35 END

SUB )I'TINE PLOTXY ?/4-UPT~i FTN

I ~SUSKUUTINE PLOT XV(X, YNjqXMIN9XMA~vY 1INqYM X, IST)
01M4N S:ON X (N) 9Yt N)
CALL FLOTC3.Cv-i.-.,-3)
CALL PLOT (6sU.~iei-3)

5 XFAC(G@0/(XMAX-X9I4)
YFAC=1I. ./ (YMAX-YMtN)
00 999 11,9N

YYz(YQ()-YMIN)fYFA0
Ij CALL SYBLXg~l 799.vl

999 CONTINUE
CALL PLOT(±O.,rJ.O,3)
IF (IS7*EQ*D) RETURN
JJ zG

Is CALL FLOTE(J)
LE I UK.
END 105



S0130TINE F!. 74/7, COT~j FTN 4.?+*i.b

I SUOK~C UTINE Fl (Tfx9XD
COMIN1,'JS'UF
PEAL 1?~,NSqrtU
01 MEN SION X (f) g X ( 3

I bS-6 3oSlN(31.,AS't)
FS:FS +PI

XS%:MLI'#X( 1) ,10 -1CbUS(%rS)
YSU'*X(2 ) 01S-'(e S)

=( 1W +2+X ( 2) ' t2)
FS=(XS4**2.YS4"2)* ".

DX (1) =X(3)
OX (2) =x(t.,)
OX (3) =-X( 1) /P JP4 - kS X x 1) X S) M 4t 3 +X S/-SA3)

OX C,)) =X(,)

25 +~X (1~) /FX(- *)

SUIVUTINE PLOTSC ?4/174 OPT =I FT N

SU8RO UTINS PL 3TSC (XtYp 1)
01 MENSI0to Xt M) 9 YlM)
CALL FLOTS(3C)
CALL FLOTCO0, *- 3.-3)
CALL PLOT( oto5p-3)
CALL PLOT i.22,,., 3)
CALL PLOT U o2 5 9 ,)
CALk. PLOT (7., o9. 2)
CALL PLOT(?e25,.,q2)

11CALL FLOT(io25roF92)
CALL PLOTU.i?3 91.,--3)
CALL SCALE(X,5.,p ,i)
CALL SCALE(Yt3orvi)
CALL AXIS(C.,J.,HX-AX7S,-6,5.,3,X(I+1),X(M,2))

is CALL AXIS(O.,O.,tHY-AXIS,6,8.,~3.,Y( ,+1),Y(M+2))
CALL LINE (X#Ygji,-i 0)
CAL.l FLOTEO
'R UF N

END 106



?Kolenkiewicz and Carpenteriruth :,.odel

FX'Tc' NAL F1

IF (-::rF (5) N~o) GC TC 7
U L L EKX$ET(lJ,l)

k:3b'A ,2e42
S=3: C.32 3

NS 7 L 3i3

Pi r3. 1 -*9 2 6t 3L-

N3 =( '~2.3.,1') 7 ( 1 2..tJ .* i:

ALFHI =AL0HAja< V.i ' n *,J*1t6 A 1

-CO:CT.i G " I* )
600T=ECOT*.jA>11I"> N-JJ*S'J( 1 *1

35~X a) COTI.

2E7A=2EA~oTw3JTf4arwAe!~r4 1i/~)

-COS(1.L41 ~jJ V1084



PiK 1 ,X 9Y ,X C. ), a X x 5)~ Xj Y

N~ CN =

flELT= -1 UT

A 3S E R= 0 j nf2i! ci V. i
IFLAr =1
KO UNT =
1m(K(jLT)=T

VII (KC U NT) =X (2)
V X r(K LL 14 =X(3)

VC ( l C U T. = X )
'5YC K C UINT =y('.,)

VYC (K CU141 ) =X (3

IF (X I1) oLT.,. *J) 44=4+ OT

yw (i~r UrT =Y(A C7 ( A ) +Y E'SN (A) +"I.J

CALL CCt2( FltkQtJ, XT TCUE A93ER:,lFLAGvWW(,k~iW3RK)
:F(IFLtGsE')*l) GO) TO
KO UNIT = K OINT+ I
TF(KCUNT.EJX2,j GO TO 4~
!XoUT~ lCUT+DELT

* &GO To i
COIJT NLE
F; .iNl*,SOMCON 3OqgTT*

CONT:NUE
PR.INT *,*SATELLITE W)R''~o

110 t I =9KOUNT
IAWk~ITE (Ct,) TMI() XC()YC(I),VK.() VYCU)

7 CONT!NUE
P (I NfT * , "W H-E EL :-R Ot.IVT'
CO 9 7=i9KOUNT

s CONT7 NUE
11z NIII

00 12 1iN
AA (I) X4(I)
Be (1) ZYW(IM

12 C0ITVT.UE 109
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